3.689 \(\int \frac{(d x)^{5/2}}{a^2+2 a b x^2+b^2 x^4} \, dx\)

Optimal. Leaf size=281 \[ \frac{3 d^{5/2} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{3 d^{5/2} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{3 d^{5/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} \sqrt [4]{a} b^{7/4}}+\frac{3 d^{5/2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{4 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{d (d x)^{3/2}}{2 b \left (a+b x^2\right )} \]

[Out]

-(d*(d*x)^(3/2))/(2*b*(a + b*x^2)) - (3*d^(5/2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*
Sqrt[2]*a^(1/4)*b^(7/4)) + (3*d^(5/2)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^
(1/4)*b^(7/4)) + (3*d^(5/2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*S
qrt[2]*a^(1/4)*b^(7/4)) - (3*d^(5/2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*
x]])/(8*Sqrt[2]*a^(1/4)*b^(7/4))

________________________________________________________________________________________

Rubi [A]  time = 0.279858, antiderivative size = 281, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.321, Rules used = {28, 288, 329, 297, 1162, 617, 204, 1165, 628} \[ \frac{3 d^{5/2} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{3 d^{5/2} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{3 d^{5/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} \sqrt [4]{a} b^{7/4}}+\frac{3 d^{5/2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{4 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{d (d x)^{3/2}}{2 b \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^(5/2)/(a^2 + 2*a*b*x^2 + b^2*x^4),x]

[Out]

-(d*(d*x)^(3/2))/(2*b*(a + b*x^2)) - (3*d^(5/2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*
Sqrt[2]*a^(1/4)*b^(7/4)) + (3*d^(5/2)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^
(1/4)*b^(7/4)) + (3*d^(5/2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*S
qrt[2]*a^(1/4)*b^(7/4)) - (3*d^(5/2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*
x]])/(8*Sqrt[2]*a^(1/4)*b^(7/4))

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(d x)^{5/2}}{a^2+2 a b x^2+b^2 x^4} \, dx &=b^2 \int \frac{(d x)^{5/2}}{\left (a b+b^2 x^2\right )^2} \, dx\\ &=-\frac{d (d x)^{3/2}}{2 b \left (a+b x^2\right )}+\frac{1}{4} \left (3 d^2\right ) \int \frac{\sqrt{d x}}{a b+b^2 x^2} \, dx\\ &=-\frac{d (d x)^{3/2}}{2 b \left (a+b x^2\right )}+\frac{1}{2} (3 d) \operatorname{Subst}\left (\int \frac{x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )\\ &=-\frac{d (d x)^{3/2}}{2 b \left (a+b x^2\right )}-\frac{(3 d) \operatorname{Subst}\left (\int \frac{\sqrt{a} d-\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{4 \sqrt{b}}+\frac{(3 d) \operatorname{Subst}\left (\int \frac{\sqrt{a} d+\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{4 \sqrt{b}}\\ &=-\frac{d (d x)^{3/2}}{2 b \left (a+b x^2\right )}+\frac{\left (3 d^{5/2}\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}+\frac{\left (3 d^{5/2}\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}+\frac{\left (3 d^3\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{8 b^2}+\frac{\left (3 d^3\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{8 b^2}\\ &=-\frac{d (d x)^{3/2}}{2 b \left (a+b x^2\right )}+\frac{3 d^{5/2} \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{3 d^{5/2} \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}+\frac{\left (3 d^{5/2}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{\left (3 d^{5/2}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} \sqrt [4]{a} b^{7/4}}\\ &=-\frac{d (d x)^{3/2}}{2 b \left (a+b x^2\right )}-\frac{3 d^{5/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} \sqrt [4]{a} b^{7/4}}+\frac{3 d^{5/2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{4 \sqrt{2} \sqrt [4]{a} b^{7/4}}+\frac{3 d^{5/2} \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}-\frac{3 d^{5/2} \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{8 \sqrt{2} \sqrt [4]{a} b^{7/4}}\\ \end{align*}

Mathematica [C]  time = 0.0152097, size = 54, normalized size = 0.19 \[ \frac{2 d (d x)^{3/2} \left (\left (a+b x^2\right ) \, _2F_1\left (\frac{3}{4},2;\frac{7}{4};-\frac{b x^2}{a}\right )-a\right )}{a b \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^(5/2)/(a^2 + 2*a*b*x^2 + b^2*x^4),x]

[Out]

(2*d*(d*x)^(3/2)*(-a + (a + b*x^2)*Hypergeometric2F1[3/4, 2, 7/4, -((b*x^2)/a)]))/(a*b*(a + b*x^2))

________________________________________________________________________________________

Maple [A]  time = 0.06, size = 209, normalized size = 0.7 \begin{align*} -{\frac{{d}^{3}}{2\,b \left ( b{d}^{2}{x}^{2}+a{d}^{2} \right ) } \left ( dx \right ) ^{{\frac{3}{2}}}}+{\frac{3\,{d}^{3}\sqrt{2}}{16\,{b}^{2}}\ln \left ({ \left ( dx-\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{dx}\sqrt{2}+\sqrt{{\frac{a{d}^{2}}{b}}} \right ) \left ( dx+\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{dx}\sqrt{2}+\sqrt{{\frac{a{d}^{2}}{b}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}}+{\frac{3\,{d}^{3}\sqrt{2}}{8\,{b}^{2}}\arctan \left ({\sqrt{2}\sqrt{dx}{\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}}+{\frac{3\,{d}^{3}\sqrt{2}}{8\,{b}^{2}}\arctan \left ({\sqrt{2}\sqrt{dx}{\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x)

[Out]

-1/2*d^3/b*(d*x)^(3/2)/(b*d^2*x^2+a*d^2)+3/16*d^3/b^2/(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x-(a*d^2/b)^(1/4)*(d*x)^(1
/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+3/8*d^3/b^2/(a*d^2/b)^
(1/4)*2^(1/2)*arctan(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2)+1)+3/8*d^3/b^2/(a*d^2/b)^(1/4)*2^(1/2)*arctan(2^(1/2)
/(a*d^2/b)^(1/4)*(d*x)^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.37561, size = 552, normalized size = 1.96 \begin{align*} -\frac{4 \, \sqrt{d x} d^{2} x + 12 \,{\left (b^{2} x^{2} + a b\right )} \left (-\frac{d^{10}}{a b^{7}}\right )^{\frac{1}{4}} \arctan \left (-\frac{\left (-\frac{d^{10}}{a b^{7}}\right )^{\frac{1}{4}} \sqrt{d x} b^{2} d^{7} - \sqrt{d^{15} x - \sqrt{-\frac{d^{10}}{a b^{7}}} a b^{3} d^{10}} \left (-\frac{d^{10}}{a b^{7}}\right )^{\frac{1}{4}} b^{2}}{d^{10}}\right ) - 3 \,{\left (b^{2} x^{2} + a b\right )} \left (-\frac{d^{10}}{a b^{7}}\right )^{\frac{1}{4}} \log \left (27 \, \sqrt{d x} d^{7} + 27 \, \left (-\frac{d^{10}}{a b^{7}}\right )^{\frac{3}{4}} a b^{5}\right ) + 3 \,{\left (b^{2} x^{2} + a b\right )} \left (-\frac{d^{10}}{a b^{7}}\right )^{\frac{1}{4}} \log \left (27 \, \sqrt{d x} d^{7} - 27 \, \left (-\frac{d^{10}}{a b^{7}}\right )^{\frac{3}{4}} a b^{5}\right )}{8 \,{\left (b^{2} x^{2} + a b\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="fricas")

[Out]

-1/8*(4*sqrt(d*x)*d^2*x + 12*(b^2*x^2 + a*b)*(-d^10/(a*b^7))^(1/4)*arctan(-((-d^10/(a*b^7))^(1/4)*sqrt(d*x)*b^
2*d^7 - sqrt(d^15*x - sqrt(-d^10/(a*b^7))*a*b^3*d^10)*(-d^10/(a*b^7))^(1/4)*b^2)/d^10) - 3*(b^2*x^2 + a*b)*(-d
^10/(a*b^7))^(1/4)*log(27*sqrt(d*x)*d^7 + 27*(-d^10/(a*b^7))^(3/4)*a*b^5) + 3*(b^2*x^2 + a*b)*(-d^10/(a*b^7))^
(1/4)*log(27*sqrt(d*x)*d^7 - 27*(-d^10/(a*b^7))^(3/4)*a*b^5))/(b^2*x^2 + a*b)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{\frac{5}{2}}}{\left (a + b x^{2}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**(5/2)/(b**2*x**4+2*a*b*x**2+a**2),x)

[Out]

Integral((d*x)**(5/2)/(a + b*x**2)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.20044, size = 355, normalized size = 1.26 \begin{align*} -\frac{1}{16} \,{\left (\frac{8 \, \sqrt{d x} d^{3} x}{{\left (b d^{2} x^{2} + a d^{2}\right )} b} - \frac{6 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{3}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{a b^{4}} - \frac{6 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{3}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{a b^{4}} + \frac{3 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{3}{4}} \log \left (d x + \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{a b^{4}} - \frac{3 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{3}{4}} \log \left (d x - \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{a b^{4}}\right )} d \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="giac")

[Out]

-1/16*(8*sqrt(d*x)*d^3*x/((b*d^2*x^2 + a*d^2)*b) - 6*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*
d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a*b^4) - 6*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2
)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a*b^4) + 3*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x + sqrt(2)*(a*d
^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a*b^4) - 3*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)
*sqrt(d*x) + sqrt(a*d^2/b))/(a*b^4))*d